
Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit IV Intents, Fragments, Toast and Alert Dialogs

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 1

UNIT IV: Intents, Fragments, Toast and Alert Dialogs

4.1 Application context
4.2 Intents and its Types.
4.3 Notifications
4.4 Introduction to Fragments.
4.5 Creating and Adding Fragments.
4.6 Lifecycle of Fragment
4.7 Toast, Custom Toast
4.8 Alert Dialog, Creating Custom Alert Dialog

4.1 Application context

Android apps are popular for a long time and it is evolving to a greater level as
user’s expectations are that they need to view the data that they want in an
easier smoother view
 It allows us to access resources.
 It allows us to interact with other Android components by sending

messages.
 It gives you information about your app environment.

1. It is the context of the current/active state of the application.
2. It is used to get information about the activity and application.
3. It is used to get access to resources, databases, and shared

preferences, etc.
4. Both the Activity and Application classes extend the Context class.

Types of Context in Android
There are mainly two types of context are available in Android.

1. Application Context and
2. Activity Context

Application Context
This context is tied to the life cycle of an application. Mainly it is an instance
that is a singleton and can be accessed via getApplicationContext(). Some use
cases of Application Context are:
 If it is necessary to create a singleton object
 During the necessity of a library in an activity

https://www.geeksforgeeks.org/activity-lifecycle-in-android-with-demo-app/

Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit IV Intents, Fragments, Toast and Alert Dialogs

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 2

getApplicationContext():
It is used to return the context which is linked to the Application which holds
all activities running inside it. When we call a method or a constructor, we
often have to pass a context and often we use “this” to pass the activity context
or “getApplicationContext” to pass the application context.

 This method is generally used for the application level and can be used to
refer to all the activities. For example, if we want to access a variable
throughout the android app, one has to use it via getApplicationContext().

Activity Context

It is the activity context meaning each and every screen got an activity. For
example, EnquiryActivity refers to EnquiryActivity only and AddActivity refers
to AddActivity only.

 The user is creating an object whose lifecycle is attached to an activity.
 Whenever inside an activity for UI related kind of operations like toast,

dialogue, etc,

getContext():
It returns the Context which is linked to the Activity from which it is
called. This is useful when we want to call the context from only the current
running activity.

getBaseContext():
The base context is set by the constructor or setBaseContext().This method is
only valid if we have a ContextWrapper.

this:
“this” argument is of a type “Context”. To explain this context let’s take an
example to show a Toast Message using “this”.

Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit IV Intents, Fragments, Toast and Alert Dialogs

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 3

4.2 Intents and its Types.

It is quite usual for users to witness a jump from one application to another as
a part of the whole process

 Intents are used for navigating among various activities within the same
application

Android application components can connect to other Android applications. This
connection is based on a task description represented by an Intent object.

Intents are asynchronous messages which allow application components to
request functionality from other Android components. Intents allow you to
interact with components from the same applications as well as with
components contributed by other applications

Uses of Intent

1. Sending the User to Another App
2. Setting a Launcher Activity
3. Switch Between Current Activity to Next Activity

Intents are objects of the android.content.Intent type. Your code can send them to
the Android system defining the components you are targeting. For example, via
the startActivity() method you can define that the intent should be used to start
an activity.

There are two types of intents in android:

1. Explicit Intent
2. Implicit Intent.

Explicit Intent

Explicit Intent specifies the component. In such a case, intent provides the
external class to be invoked.

Explicit Intents are used to connect the application internally.

Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit IV Intents, Fragments, Toast and Alert Dialogs

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 4

In Explicit we use the name of component which will be affected by Intent. For
Example: If we know class name then we can navigate the app from One
Activity to another activity using Intent. In the similar way we can start a
service to download a file in background process.

Explicit Intent work internally within an application to perform navigation and
data transfer.

Intent intent = new Intent(getApplicationContext(), SecondActivity.class);

startActivity(intent);

Implicit Intent

In Implicit Intents we do need to specify the name of the component. We just
specify the Action which has to be performed and further this action is
handled by the component of another application.

The basic example of implicit Intent is to open any web page

Intent intentObj = new Intent(Intent.ACTION_VIEW);

intentObj.setData(Uri.parse("https://www.google.com"));

startActivity(intentObj);

Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit IV Intents, Fragments, Toast and Alert Dialogs

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 5

4.3 Notifications

A notification is a message you can display to the user outside of your
application's normal UI. When you tell the system to issue a notification, it first
appears as an icon in the notification area.

Create and Send Notifications

Step 1 - Create Notification Builder

As a first step is to create a notification builder
using NotificationCompat.Builder.build(). You will use Notification Builder to set
various Notification properties like its small and large icons, title, priority etc.

NotificationCompat.Builder mBuilder = new NotificationCompat.Builder(this)

Step 2 - Setting Notification Properties

Once you have Builder object, you can set its Notification properties using
Builder object as per your requirement. But this is mandatory to set at least
following −

 A small icon, set by setSmallIcon()

 A title, set by setContentTitle()

 Detail text, set by setContentText()

 mBuilder.setSmallIcon(R.drawable.notification_icon);
 mBuilder.setContentTitle("Notification Alert, Click Me!");
 mBuilder.setContentText("Hi, This is Android Notification Detail!");

Step 3 - Attach Actions

This is an optional part and required if you want to attach an action with the
notification. An action allows users to go directly from the notification to
an Activity in your application, where they can look at one or more events or do
further work.

The action is defined by a PendingIntent containing an Intent that starts an
Activity in your application. To associate the PendingIntent with a gesture, call
the appropriate method of NotificationCompat.Builder. For example, if you want

Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit IV Intents, Fragments, Toast and Alert Dialogs

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 6

to start Activity when the user clicks the notification text in the notification
drawer, you add the PendingIntent by calling setContentIntent().

Intent resultIntent = new Intent(this, ResultActivity.class);
TaskStackBuilder stackBuilder = TaskStackBuilder.create(this);
stackBuilder.addParentStack(ResultActivity.class);

// Adds the Intent that starts the Activity to the top of the stack
stackBuilder.addNextIntent(resultIntent);
PendingIntent resultPendingIntent =
stackBuilder.getPendingIntent(0,PendingIntent.FLAG_UPDATE_CURRENT);
mBuilder.setContentIntent(resultPendingIntent);

Step 4 - Issue the notification

Finally, you pass the Notification object to the system by calling
NotificationManager.notify() to send your notification. Make sure you
call NotificationCompat.Builder.build() method on builder object before
notifying it. This method combines all of the options that have been set and
return a new Notification object.

NotificationManager mNotificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);

// notificationID allows you to update the notification later on.
mNotificationManager.notify(notificationID, mBuilder.build());

Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit IV Intents, Fragments, Toast and Alert Dialogs

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 7

4.4 Introduction to Fragments.
A Fragment is a piece of an activity which enable more modular activity
design. It will not be wrong if we say, a fragment is a kind of sub-activity.

 A fragment has its own layout and its own behaviour with its own life cycle
callbacks.

 You can add or remove fragments in an activity while the activity is
running.

 You can combine multiple fragments in a single activity to build a multi-
pane UI.

 A fragment can be used in multiple activities.

 Fragment life cycle is closely related to the life cycle of its host activity
which means when the activity is paused, all the fragments available in the
activity will also be stopped.

 A fragment can implement a behaviour that has no user interface
component.

 Fragments were added to the Android API in Honeycomb version of
Android which API version 11.

 We can add, replace or remove Fragment’s in an Activity while the activity is running.
For performing these operations we need a Layout(Relative Layout, FrameLayout or
any other layout) in xml file and then replace that layout with the required
Fragment.

Need Of Fragments In Android:

Before the introduction of Fragment’s we can only show a single Activity on the screen at
one given point of time so we were not able to divide the screen and control different parts
separately. With the help of Fragment’s we can divide the screens in different parts and
controls different parts separately.

By using Fragments we can comprise multiple Fragments in a single Activity. Fragments
have their own events, layouts and complete life cycle. It provide flexibility and also
removed the limitation of single Activity on the screen at a time.

Basic Fragment Code In XML:

<fragment

android:id="@+id/fragments"

https://abhiandroid.com/ui/relative-layout/
https://abhiandroid.com/ui/framelayout/
https://abhiandroid.com/ui/xml/

Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit IV Intents, Fragments, Toast and Alert Dialogs

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 8

android:layout_width="match_parent"

android:layout_height="match_parent" />

4.5 Creating and Adding Fragments.

Create A Fragment Class In Android Studio:

For creating a Fragment firstly we extend the Fragment class, then override key
lifecycle methods to insert our app logic, similar to the way we would with
an Activity class. While creating a Fragment we must use onCreateView()
callback to define the layout and in order to run a Fragment.

Now add new fragment in existing project by right clicking on java/package ->
New -> Select Fragment and name them as fragment_first .

1. FragmentActivity: The base class for all activities using compatibility based
Fragment (and loader) features.

2. Fragment: The base class for all Fragment definitions

3. FragmentManager: The class for interacting with Fragment objects inside an
activity

4. FragmentTransaction: The class for performing an atomic set of Fragment
operations such as Replace or Add a Fragment.

Adding Fragment Class In Android Studio:

FirstFragment fragment=new First Fragment();

FragmentManager fm = getFragmentManager();

// create a FragmentTransaction to begin the transaction and replace the Fragm
ent

FragmentTransaction fragmentTransaction = fm.beginTransaction();

// replace the FrameLayout with new Fragment

fragmentTransaction.replace(R.id.frameLayout, fragment);

fragmentTransaction.commit(); // save the changes

 5: Now add another new fragment in existing project by right clicking on
java/package -> New -> Select Fragment and name them as fragment_first .

Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit IV Intents, Fragments, Toast and Alert Dialogs

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 9

4.6 Lifecycle of Fragment

onAttach()
The fragment instance is associated with an activity instance.The fragment and
the activity is not fully initialized.

onCreate()
The system calls this method when creating the fragment.

onCreateView()
The system calls this callback when it's time for the fragment to draw its user
interface for the first time. To draw a UI for your fragment, you must return
a View component from this method that is the root of your fragment's layout.

onActivityCreated()
The onActivityCreated() is called after the onCreateView() method when the
host activity is created.

onStart()

The onStart() method is called once the fragment gets visible.

onResume()

Fragment becomes active.

onPause()

The system calls this method as the first indication that the user is leaving the
fragment.

Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit IV Intents, Fragments, Toast and Alert Dialogs

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 10

onStop()

Fragment going to be stopped by calling onStop()

onDestroyView()

Fragment view will destroy after call this method

onDestroy()

onDestroy() called to do final clean-up of the fragment's state but Not guaranteed
to be called by the Android platform.

4.7 Toast, Custom Toast

Toast is used to display information for a period of time. It contains a message to
be displayed quickly and disappears after specified period of time. It does not
block the user interaction. Toast is a subclass of Object class. In this we use two
constants for setting the duration for the Toast. Toast notification in android
always appears near the bottom of the screen. We can also create our custom
toast by using custom layout (xml file).

Important Methods Of Toast:

1. makeText(Context context, CharSequence text, int duration): This method
is used to initiate the Toast. This method take three parameters First is for the
application Context, Second is text message and last one is duration for the Toast.

Constants of Toast: Below is the constants of Toast that are used for setting the
duration for the Toast.

1. LENGTH_LONG: It is used to display the Toast for a long period of time. When
we set this duration the Toast will be displayed for a long duration.

2. LENGTH_SHORT: It is used to display the Toast for short period of time. When
we set this duration the Toast will be displayed for short duration.

2. show(): This method is used to display the Toast on the screen. This method
is display the text which we create using makeText() method of Toast.

3. setGravity(int,int,int): This method is used to set the gravity for the Toast.
This method accepts three parameters: a Gravity constant, an x-position offset,
and a y-position offset.

4. setText(CharSequence s): This method is used to set the text for the Toast. If
we use makeText() method and then we want to change the text value for the
Toast then we use this method.

Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit IV Intents, Fragments, Toast and Alert Dialogs

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 11

Toast toast = Toast.makeText(getApplicationContext(), "Simple Toast In
Android", Toast.LENGTH_LONG);

// initiate the Toast with context, message and duration for the Toast

toast.setGravity(Gravity.TOP | Gravity.LEFT, 0, 0); // set gravity for the Toast.

toast.setText("Changed Toast Text"); // set the text for the Toast

toast.show(); // display the Toast

 LayoutInflater li = getLayoutInflater();

 //Getting the View object as defined in the customtoast.xml file

 View layout = li.inflate(R.layout.customtoast,(ViewGroup)
findViewById(R.id.custom_toast_layout));

 //Creating the Toast object

 Toast toast = new Toast(getApplicationContext());

 toast.setDuration(Toast.LENGTH_SHORT);

 toast.setGravity(Gravity.CENTER_VERTICAL, 0, 0);

 toast.setView(layout);//setting the view of custom toast layout

 toast.show();

Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit IV Intents, Fragments, Toast and Alert Dialogs

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 12

4.8 Alert Dialog, Creating Custom Alert Dialog

The custom dialog uses DIALOG to create custom alert in android studio. Dialog
display a small window i.e. a popup which draws the user attention over the
activity before they continue moving forward. The dialog appears over the
current window and display the content defined in it.

The Alert Dialog and Custom Alert Dialog both prompts a small window to make
decision. The Alert Dialog make use of the defined components or methods like
setIcon, setTitle, set message etc. but with Custom Alert Dialog we can have the
dialog customised and can define the layout of dialog as required.

final Dialog dialog = new Dialog(context);

dialog.setContentView(R.layout.custom);

Button dialogButton = (Button)dialog.findViewById(R.id.dialogButtonOK);

 // if button is clicked, close the custom dialog

 dialogButton.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 dialog.dismiss();
Toast.makeText(getApplicationContext(),"Dismissed..!!",Toast.LENGTH_SHORT
).show();

 });

dialog.show();

Notes: Mobile Application Development, Class: B.Sc. SE. TY, Unit IV Intents, Fragments, Toast and Alert Dialogs

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 13

Thank You

